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Abstract

We study a signaling game of common interest in which a stochastic noise
is perturbing the communication between an informed sender and an un-
informed receiver. Despite this inhibiting factor, efficient communication
is possible for any kind of noise and improves upon babbling unless the
noisy channel is uninformative. Endowing a compositional message space
with the Hamming distance, we explore the impact of a a well-known noise
channel from information theory on the grammatical structure of efficient
communication. Under noise, relabeling of cells cannot be arbitrary, but
has to assign distant messages to the most distant states. The more noisy
the channel, the less frequent messages are used that describe states closer
to the pooling action. Efficient communication under noise can be learned
through the forces of evolution, but not every equilibrium is stable.

Keywords: cheap talk, noisy communication, language formation, Voronoi
language

1 Introduction

In many situations our communication is flawed by errors having various origins.
A person may stammer or slip their tongue, background noise may make it harder
to understand or the recipient may suffer from a hearing impairment. It is thus
natural to assume that any kind of communication is imperfect and prone to error.
This noise is to be taken into account by both the speaker and the recipient in order
to come to a proper understanding and buffer minor errors. This chapter proposes
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a simple cheap talk game of common interest with a stochastic noisy channel. The
state space is infinite, but behavioral limitations restrict the agents to a finite mes-
sage space. Irrespective of the noise, communication is helpful. Indeed, efficient
languages exist for arbitrary noise channels and strictly reduce the joint expected
loss of the agents below the one if they did not communicate. We analyze a natural
class of noisy channels that captures the idea that close words are more likely to
be mistaken. Bayesian updates are possible even for events with zero probability,
explaining why slight stammers or spelling mistakes do not disturb a proper un-
derstanding. We are interested in the structural rules of efficient languages, i.e.,
their grammar. The following conclusions can be made under a quadratic loss on a
Euclidean space. The sender wants to induce a maximal spread of optimal receiver
actions. To minimize their loss, the sender assigns words to different convex clus-
ters of states. These clusters have sharp boundaries, reducing vagueness in their
language. Being highly compositional, common languages have a specific structure
which makes some kind of errors more likely to happen than others. Endowing the
message space with a metric that respects its compositionality, we employ a noisy
channel from information theory. Close words are more easily confused. If noise
is present, the sender ideally labels states that lead to a high loss when confused
by distinct words. If necessary, the sender reduces their frequency of using words
that describe average states in favor of stressing extreme ones. Agents can learn
locally efficient communication by means of evolution. However, not all equilibria
are stable.

This chapter contributes to the economic literature on cheap talk games with
common interest and a stochastic noise. Our benchmark model follows the one of
Voronoi languages, Jäger et al. (2011), featuring a sender who is restricted to a
finite message space to describe a state out of a continuum. Messages are pooled
into cells, giving them a geometric structure that can be interpreted as the gram-
mar of a language, cf. Jäger (2007), Gärdenfors (2004). Noisy communication has
already been studied as a generalization of many influential paper. For instance,
Blume et al. (2007) extend the seminal work of Crawford & Sobel (1982) to a
noisy talk. The authors show that noise can improve welfare under conflict of
interest. A similar observation was made by Myerson (1991). Another example
of adding noise to communication is Jeitschko & Normann (2012) who extend the
famous labor market model of Spence (1978). They find that under stochastic
signaling subjects’ strategies are closer to equilibrium play. Nowak & Krakauer
(1999) show that evolution favors restricting to finitely many messages if signals
can be misunderstood. Deriving an equilibrium concept for codes, Hernández &
von Stengel (2014) bridge the gap between classical information theory and game
theory. Being limited to broad terms by bounded rationality, Cremer et al. (2007)
study efficient communication in which the receiver faces decoding cost that in-
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crease in the breadth of the word, i.e., the number of states covered. If this loss
depends on the state and the action taken rather than just the breadth, Sobel
(2015) recovers convexity of the states lumped together for each message. Martel
et al. (2019) argue for coarse communication to arise even in the absence of con-
flict or bounded rationality. Rubinstein (1989) shows that optimal strategies can
differ significantly if the common knowledge assumption is disturbed by errors in
communication. Communication can also be impaired if agents are ignorant or do
not share the same vocabulary, Blume & Board (2013).

The remaining structure of the paper is as follows. Section 2 introduces the
formal model. The best reply of the receiver is analyzed in Section 3. The sender’s
best response and the existence of efficient equilibria are explored in Section 4.
Section 5 presents a concrete noisy channel with desirable properties. Structural
implications for efficiency under a quadratic loss are given in Section 6. Section 7
shows that efficient communication can be learned over time. A brief summary is
given in Section 8. The appendix contains proofs and calculations.

2 Model and notation

We adapt the setting of Voronoi languages, cf. Jäger et al. (2011). There are two
players, a sender and a receiver who engage in a cheap talk game. Let T ⊊ RL,
L ∈ N≥1, be a convex and compact set representing states of the world. We
think of an element t ∈ T as an observation the sender has made and wants
to inform the receiver about. Nature draws the state according to a common
prior distribution described by an atomless measure µ0 on T that is absolutely
continuous w.r.t. the Lebesgue measure with a strictly positive and continuous
density function f0. The sender can communicate by choosing a message v to be
sent to the receiver. The message space W available to the sender is finite, making
perfect revelation of the state impossible. Communication is further frustrated by
introducing stochastic error or noise ε : W → ∆(W) that may confound the sent
message. It is possible that not the intended word v is being received, but instead
an erroneous message w with probability ε(w | v). The error admits the notion of
a Markov kernel by interpreting ε : 2W × W → [0, 1] where W is endowed with
the discrete σ-algebra. Having observed a message w, the receiver takes an action
α(w) ∈ T , assigning it a representative type. Following the cooperative principle
of Grice (1975), communication is first and foremost a cooperative effort. We thus
assume that the agents have a common interest to match the interpretation α(w)
and the state t. To this end, we endow T with a norm ∥.∥ and weigh the norm
difference between the state and the interpretation by a strictly convex and strictly
increasing function ℓ : R≥0 → R. If t is the state of the world and s is the action
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taken by the receiver, the loss for both parties is thus ℓ(∥t− s∥). Since the sender
does not know the state prior to the play, agents face an expected loss according
to µ0. A (pure) strategy of the sender is a (µ0-measurable) π : T → W, called a
communication device. The receiver’s (pure) strategy is given by an interpretation
(map) α : W → T . The expected joint loss the agents face is thus

L(π, α) : = Eµ0 [Eε(. |π(t))[ℓ(∥t− α(w)∥)]] (1)

=

∫
T

∑
w∈W

ε(w | π(t)) · ℓ(∥t− α(w)∥)µ0(dt). (2)

A strategy profile (π, α) is referred to as a language. A language describes how
information is articulated and processed. The sender and the receiver aspire to
use a language that minimizes the loss of communication. The solution concept
employed is that of perfect Bayesian Nash equilibria which we subsequently also
refer to as noise equilibrium following Blume et al. (2007). Altering π on null
sets does not change the expected loss. Furthermore, if every message is flawlessly
transmitted, i.e., ε(w | v) = 1v(w) is the indicator function, the expected loss and
hence the analysis reduces to the one in Jäger et al. (2011). We briefly motivate our
assumptions. Compactness of T and continuity of ℓ ensure integrability. Convexity
of T guarantees all best replies to be in T while convexity and monotonicity of ℓ
makes the receiver’s best replies unique.

In this chapter, we are interested in how the agents best respond to their peer’s
behavior, how they can achieve efficient communication and whether or not they
can learn to reach a better understanding over time.

3 Induced beliefs and the receiver’s best reply

A first step towards understanding a game is to pin down the best replies of both
players aiming at characterizing equilibria. As in games of common interest a
strategy profile leading to an efficient outcome entails mutual best replies and
is thus an equilibrium, we get a better understanding of efficient languages. To
this end assume that the receiver is aware of the sender’s communication device
π : T → W. The knowledge of π allows the receiver to form expectations about
the distribution of the words they are going to receive. Formally, the number

λπ(w) := Eµ0 [ε(w |π(t))] =
∫
T

ε(w | π(t))µ0(dt). (3)

specifies the expected probability with which the receiver will observe the word w
if the sender uses the communication device π.
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A message w is received either if it was actually sent (ε(w |w) > 0) or by
error (ε(w | v) > 0 for some v). If w is received with positive probability λπ(w) >
0, the receiver can use their knowledge about π to re-asses their informational
environment. Formally, they use Bayes Rule to update their prior belief. The
resulting posterior µπ

w is characterized by its density function

fπ
w(t) :=

f0(t) · ε(w | π(t))
λπ(w)

. (4)

Knowing π and receiving the signal w, the receiver re-evaluates the chances that
the sender is of some type t by applying µπ

w. If λπ(w) = 0, we set µπ
w := µ0 by

convention.

It is worth noting that the set of induced posterior beliefs {µπ
w}w∈W can be

interpreted as a decomposition of the prior belief µ0. We can interpret λπ as a
distribution over posterior beliefs with support on the finite set {µπ

w}w∈W ⊂ ∆(W).
It is well-known and useful that the weighted average of the posterior beliefs sums
up to the prior belief, i.e., ∑

w∈W

λπ(µπ
w) · µπ

w = µ0. (5)

More precisely, for any random variable X : T → R we have

Eλπ [Eµπ
w
[X]] = Eµ0 [X]. (6)

This property is referred to as Bayes-Plausibility, cf. Kamenica & Gentzkow (2011).
Intuitively, the sender can only induce posterior beliefs that are in expectation
(w.r.t. λπ) the prior belief µ0 by means of a communication device. Using the
notion of λπ and µπw allows us to write the expected loss in the following equivalent
way

L(π, α) = Eµ0 [Eε(. |π(t))[ℓ(∥t− α(w)∥)]] (7)

=

∫
T

∑
w∈W

ε(w | π(t)) · ℓ(∥t− α(w)∥)µ0(dt)

=
∑
w∈W

λπ(w) ·
∫
T

λπ(w)−1 · ε(w | π(t)) · ℓ(∥t− α(w)∥)µ0(dt)

= Eλπ [Eµπ
w
[ℓ(∥t− α(w)∥)]]. (8)

Expression (7) describes the expected loss as a weighted sum of the deficits that
occur due to the error for each realized type t. Instead, expression (8) aggregates
the expected losses under each of the posteriors and weights them according to the

5



probability with which the posterior is induced. The latter expression proves useful
in characterizing the receiver’s loss minimizing interpretation for any (induced)
posterior belief.

Lemma 3.1. Having any belief µ ∈ ∆(T ) with positive density f , the receiver
minimizes their expected loss by choosing the unique response

ŝ ∈ argmin
s∈T

Eµ[ℓ(∥t− s∥)]. (9)

Proof. All proofs are delegated to the appendix.

Henceforth, denote by α̂(µ) the unique minimizer of a receiver holding the
belief µ. We can thus define α̂(w) := α̂(µπ

w) if π is understood and refer to α̂ as
the unique best reply of the receiver. There are thus two ways of thinking of the
receiver’s best reply α̂(w) to a word. Firstly, their response is based on the heard
word and its implicit meaning and interpretation. Secondly, the received word
changes the listener’s belief about the state of the world leading to their response.
Furthermore, having a unique solution to the minimization problem, the receiver
has no incentive to play a proper mixed strategy in equilibrium.

In a setting of common interest, we expect communication to serve the purpose
of reducing misunderstandings, i.e., the expected loss. In particular, communica-
tion should foster understanding and result in a lower loss compared to the situ-
ation where individuals cannot exchange information. In the latter situation, the
receiver does not receive a message from the sender and thus cannot update their
belief. Sticking to the information at hand, the receiver seeks to minimize the loss
given µ0. We call αpool := α(µ0) = argmins∈T Eµ0 [ℓ(∥t− s∥)] the pooling action. If
the receiver applies the pooling action, the pooling loss Lpool := Eµ0 [ℓ(∥t− αpool∥)]
realizes. The following result characterizes precisely those communication devices
that improve upon the pooling loss if the receiver plays a best response.

Proposition 3.2. L(π, α̂) ≤ Lpool for any communication device π. The inequality
is strict if and only if there is a word w ∈ W with λπ(w) > 0 and α̂(w) ̸= αpool.

As long as the receiver knows the communication device π, the presence of
signals cannot be detrimental to the communication. If furthermore there is a
word sent with positive probability that does want the receiver to not take the
pooling action, communication strictly reduces the expected loss and vice versa.
The following corollary states two readily verifiable conditions under which com-
munication does not improve over the pooling loss.

Corollary 3.3. If π is constant or if v 7→ ε(· | v) is constant, then µπ
w = µ0 for

all w ∈ W. Consequently, α̂ ≡ αpool and thus L(π, α̂) = Lpool.
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Although easy and intuitive, Corollary 3.3 demonstrates that there are two
sources that can lead to non-beneficial communication. Firstly, the communica-
tion device may not be meaningful, i.e., received messages never offer additional
information. Secondly, if the error channel is uninformative, i.e., does not convey
any information: If everything is equally likely to be received, no matter what has
been sent, the receiver cannot infer any additional information. While the latter
problem is to be considered an exogenous problem of the environment, the first
one lies within the power of the sender. On a warning notice, we stress that not
all non-constant communication devices improve upon the pooling loss, not even
if it changes the informational environment of the receiver.

Example 3.4. Let T = [−1
2
, 1
2
] with uniform prior µ0. Assume the sender wants

to inform the receiver about whether the state is close to the center αpool = 0 of
the interval or not, using the words C and NC by following the communication
device depicted in Figure 1. Assume the noisy channel confuses the two messages
with probability p < 1

2
, i.e, if message C (NC) is sent, message NC (C) is received

with probability p. If the receiver gets the message C, their posterior is given by
its density

fπ
C(t) = 2 ·

{
1− p , t ∈ [−1

4
, 1
4
],

p , otherwise
. (10)

The noise channel is thus informative and makes the receiver believe that the state
is more likely to lie in the center than outside of it, changing their posterior belief
after the arrival of new information. However, if the expected loss is quadratic,
i.e., ℓ ◦ ∥t− s∥ = (t − s)2, the receiver best responds to both messages with the
pooling action αpool = 0 which constitutes a noise equilibrium. The expected
loss is Lpool even though posteriors other than the prior belief are induced. Conse-
quently, merely changing the receiver’s beliefs is not enough to reduce the expected
loss below Lpool. One needs to make the receiver do different things for different
messages. The situation is illustrated in Figure 1.

0 = αpool

= α̂(C) = α̂(NC)
−1

4
1
4

CNC NC

−1
2

1
2

Figure 1: The language from Example 3.4 with two words that induces different
posterior beliefs, but only leads to the constant pooling action. Changing beliefs
is not sufficient to reduce expected loss below the pooling one.
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In cheap talk games, there always are equilibria that attain the pooling loss.
Assume the sender is using a constant communication device, thus provoking the
constant pooling action on the receiver’s part, resulting in the pooling loss. Since
the interpretation map of the receiver is constant and thus independent of any mes-
sage received, the sender does not have an incentive to deviate from their constant
communication device either, establishing a so-called babbling equilibrium1

4 Efficient languages

In the previous section we have established that communication can only make the
agents better off in equilibrium despite the inhibiting noise. However, the expected
loss cannot be reduced to zero since full separation of states is impossible due to
having more states than messages. That raises the questions of what is the most
efficient way of communicating and (how) can it be achieved?

While the agents cannot re-negotiate their strategies during the play, say, after
the state was revealed to the sender, we can think of the two players meeting before
the game. Using a meta-language they discuss their strategies prior to the play in
search of an efficient communication, cf. Jäger et al. (2011). A language (π, α) is
called efficient if it minimizes the expected loss L(π, α) over all possible languages.
In the presented setting, this requires both agents to minimize the occurring loss
over their own action sets, i.e., to play a best response each. Any efficient language
is thus a noise equilibrium. Unsurprisingly, noise equilibria may improve upon the
pooling loss without being efficient, see Section 6.2. We now give a simple example
of an efficient language.

Example 4.1. Let T = [−1
2
, 1
2
] with uniform prior µ0. Assume the sender has two

available messages, i.e., W = {A,B}. The noisy channel confounds a sent message
with probability p. Assume a quadratic loss, i.e., agents lose (t− s)2 if the state is
t and action s is taken. Figure 2 depicts an efficient language for every p ≤ 1

2
. The

sender uses their messages efficiently by cutting the interval into a left (sending
A) and a right one (sending B). That way, the best responses of the receiver move
away from the pooling action. If p increases, the best responses come closer to the
pooling one as long as p ≤ 1

2
. At p = 1

2
the noisy channel becomes uninformative.

1The name “babbling equilibrium” is best explained with mixed strategies. Assume the
sender randomizes according to a fixed distribution G over messages for all t. As the state of
the world and the randomly picked message are completely independent from one another, the
communication device is dubbed “babbling”. The received messages on the receiver’s end will
thus also be independent of the state. Gaining no insights from any message, they optimally reply
with the pooling action, in turn making the sender indifferent between all their communication
devices.
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0 = αpool

A B

−1
2

1
2

α̂(A)
= −1

4
(1− 2p)

α̂(B)
= 1

4
(1− 2p)

Figure 2: An efficient language in the setting of Example 4.1. The sender uses
different words trying to reveal on which side of the interval the true state is
situated. The closer the probability p of confusing the two words goes to 1

2
, the

closer the optimal receiver responses become to the pooling action.

Efficient languages, such as the one in Example 4.1, can be explicitly com-
puted by characterizing and internalizing a best response of the sender for any
interpretation map. In contrast to the receiver’s best response, the sender’s best
response is not unique. For instance, they can always perturb their strategy on
a null set without altering the expected loss. More importantly for an economic
interpretation however, the sender can be indifferent between sending two or more
different words at their interim stage. The reason for this is that the corresponding
actions taken by the receiver in response amount to the same loss. More precisely,
fix any interpretation α : W → T of the receiver. Focusing on the sender’s interim
behavior2 a type t-sender is indifferent between sending any word v ∈ W out of
the (non-empty) set

argmin
v′

∑
w∈W

ε(w | v′) · ℓ(∥t− α(w)∥). (11)

Applying reasonable choices in the presence of multiple minimizers (see the proof
of Theorem 4.2 for details) we can derive a measurable partition Cα = {Cα

v }v∈W
of T , where each Cα

v consists only of types where v is a minimizing response of the
sender given α, i.e., an element of (11). Any such partition defines a best reply
communication device by letting πCα

(t) = v if and only if t ∈ Cα
v . It is worth

mentioning that the set of types where different words can serve as a minimizing
interim response, may not be a null set3. Hence, the two best replies constructed
as explained above may differ perceptibly. Fortunately, the indifference sets have
measure zero for the Euclidean norm as long as interpretations differ, cf. Proposi-
tion 6.4. Irrespective of the particular loss function or noise employed, we positively
answer the question of existence of efficient languages.

Theorem 4.2. Efficient languages exist.

2Since the marginal distributions have full support, ex-ante and interim behavior coincide.
3For the maximum norm, the set of types that are indifferent between sending two different

word might have positive measure, see, e.g., Figure 1 in Jäger et al. (2011).
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Even if agents were unable to find or agree on an efficient equilibrium play,
they should not use mixed strategies, i.e., randomizing their behavior. Intuitively,
any randomization blurs proper understanding under common interest, thereby
increasing the expected loss. If the receiver mixed between responses to a message
w, the loss in communication would increase for states close to one of these receiver
actions. Likewise, if the sender mixed between words that do not induce the
same expected loss, the overall expected loss would increase. We give a formal
explanation for why introducing randomness into the signaling or interpretation
procedure makes coordination harder to achieve. Firstly note that the receiver
always strictly favors a pure strategy α : W → T over a mixed one τ : W → ∆(T )
a posteriori by Lemma 3.1. Secondly, let σ : T → ∆(W) be a mixed strategy of
the sender, specifying a probability σ(w | t) of playing w ∈ W if they are of type
t ∈ T . The expected loss is thus given by

L(σ, α) =

∫
T

∑
v∈W

σ(v | t) ·
∑
w∈W

ε(w | v) · ℓ(∥t− α(w)∥) µ0(dt). (12)

Sending any pure v ∈ argminv′
∑

w ε(w | v) ·ℓ(∥t− α(w)∥) if the state is t is weakly
decreasing the expected loss, even strictly if σ(. | t) assigns a positive measure to
any ṽ not in (11). We thus have proven the following proposition.

Proposition 4.3. For any mixed language (σ, τ) there is a pure language (π, α)
with weakly smaller loss L(π, α) ≤ L(σ, τ).
The inequality can be made strict if τ is not a pure strategy or the support of σ(. | t)
contains a word not in (11) for positive mass of states t.

5 A metric-dependent noise channel

So far, the stochastic noise could be arbitrarily chosen. In the following we study a
noise that perturbs communication in a natural way. Messages that are similar are
more easily mistaken than ones that are dissimilar from one another. For instance,
the English words “flank” and “plank” can be more easily misunderstood than
“flank” and “igloo”4. In order to formalize this idea, we have to to endow the
message space with sufficient structure and a measure of how similar its messages
are. Our approach follows the models used in information theory that are inspired
by the following theory in linguistics. Human languages are compositional5, i.e.,

4The words taken for this example are inspired by the solutions to the Wordle web-based word
game from July 20, May 17, May 23 2023, respectively.

5While implicitly being used in the seminal work of Frege (1892), cf. Miller (2007) for a
modern reference, and even sometimes being called Frege’s principle of compositionality, Frege
arguably never explicitly formalized the concept himself, cf. Pelletier (2001). Although com-
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they are constructed from smaller building blocks. For instance, text is made up
of sentences, sentences consist of words, words are sequences of letters, syllables,
phonems. The agents have a set A with at least two elements at hand from which
they can construct a sequence of length n to form their message space W = An.
For easier reference, we call A an alphabet with elements that could represent
letters, syllables or phonems. A sequence of letters w ∈ W is a word. Restricting
to a fixed length of words is common in information theory and has proven a solid
baseline for coding theory Roth (2006). As a measure of distance between two
words we use the Hamming distance, defined by

d : W ×W → N0, ((wk)k, (vk)k) 7→ #{k ∈ {1, . . . , n} |wk ̸= vk}. (13)

Words are considered farther away from one another the more letters in the order
of appearance differ. The Hamming distance was first studied by Hamming (1950)
and is in fact a metric on W. It plays a crucial role in many applied fields related
to information theory, especially coding theory and telecommunication, cf. Roth
(2006).

The noisy channel we are now introducing behaves well with the Hamming
distance and is best understood defining it on letters first. Let ε̃ : A → ∆(A)
denote the function

a 7→ ε̃(. | a), ε̃(b | a) :=

{
1− p , b = a,

p
#A−1

, b ̸= a
, (14)

where the exogenous parameter p ∈ [0, 1] is the crossover probability, i.e., the
probability of wrongly transmitting one intended letter a. In case of an error each
of the other #A− 1 symbols is assumed to be equally likely received. It is a well-
known noise that is used to model error transitions in telecommunication, data
storage, but also finds application in DNA heritage of cell-divisions, cf. MacKay
(2002) and Cover & Thomas (2006)).

Depending on the concrete scenario, errors can feature different levels of corre-
lation. We follow the branch of literature that assumes independent occurrences
of errors for each letter. To this end we can extend the #A-ary symmetric error
channel with crossover probability p to W = An by gluing n independent copies
of ε̃ together. The result is called #A-ary symmetric channel of length n with
crossover probability p. Using the Hamming distance, the transition probabilities
are given by

ε(w | v) := (1− p)n−d(w,v) ·
(

p

#A− 1

)d(w,v)

. (15)

pelling, deriving meaning from compositionality alone is a debatable practice among linguists
and challenged by other concepts, such as contextuality, cf. Szabó (2022).
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The probability ε(w | v) that w is received if v is sent only depends on the Hamming
distance d(w, v) and the crossover probability p. Especially, ε(w | v) = ε(v |w). For
fixed v ∈ W and d ∈ {0, . . . , n} there are precisely

(
n
d

)
· (#A− 1)d different words

w with d = d(w, v) in W. Hence, ε follows a binomial distribution on the set
of families {w ∈ W | d(w, v) = d}nd=0. Being mainly interested in the transition
probability from v to a particular w rather than to such a family of words, ε is
itself the natural probability distribution to consider. For convenience, we write
m := #A− 1 and p̃ := p

(1−p)m
and can rewrite ε(w | v) = (1− p)n · p̃d(w,v) which is

often convenient. The following immediate statements capture the nice interplay
between the noise channel ε and the Hamming-distance for different crossover
probabilities p.

Remark 5.1. Suppose v ∈ W is the word sent.

(i) If p = p̃ = 0, there is no noise, i.e., v is received with probability 1.

(ii) If 0 < p < m
m+1

, i.e., 0 < p̃ < 1, ε(w | v) is decreasing in d(w, v). Especially it
is most likely to receive v.

(iii) If p = m
m+1

, i.e., p̃ = 1, ε is uninformative.

(iv) If m
m+1

< p < 1, i.e., 1 < p̃ < ∞, ε(w | v) is increasing in d(w, v). Especially,
words with maximum distance d(w, v) = n are most likely received.

(v) If p = 1, i.e., p̃ = ∞, only words with maximum distance d(w, v) = n are
received.

For p = 0 there is no noise in communication and our model coincides with
Jäger et al. (2011). If 0 < p < m

m+1
the #A-ary symmetric channel of length n

captures our intuition that words that are close in the Hamming distance are more
likely to be confounded. This property is most pronounced for p ≈ 0 and vanishes
completely at the uninformativeness bound p = m

m+1
. In fact, we find a continuous

and monotonic loss in the amount of information that can be transmitted through
the noisy channel for increasing p measured by Shannon entropy, cf. Section 5.2.
At the uninformativeness bound, ε(. | v) is the constant uniform distribution on
W for all v, making the sent and received word independent, recall also Corollary
3.3.

Interestingly, for m
m+1

< p informative communication can take place again,
even less efficient than before. The receiver now suspects the received word to
stem most likely from one among those having the maximal distance to the it.
Since this set contains more than one word if m > 1, the receiver cannot pin
down a single most probable word and is thus less confident about their guess of
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the originally sent word.6 Our discussion of entropy in Section 5.2 quantifies this
observation.

5.1 Bayesian updates and limit cases

In many realistic scenarios, errors in communication may be present, but not too
abundant. In the following, we will thus focus on the case 0 < p < m

m+1
for which

errors occur with positive probability, the noisy channel is not uninformative and
has the property that close words in the Hamming distance are more easily mis-
understood.7 In the following, we will derive the receiver’s posterior beliefs under
ε. We also study how the noisy channel behaves in the limit cases if the crossover
probability p goes to zero or the uninformativeness bound and find suitable updates
even for events of probability zero.

Since ε(w | v) > 0 for all w, v the receiver can always use Bayes rule to update
their prior belief. A short calculation yields posteriors beliefs with densities of the
form

fπ
w(t) = f0(t) ·

(∫
T

p̃d(w,π(t′))−d(w,π(t)) µ0(dt
′)

)−1

(16)

for a received word w. Note that the integrand is continuous in p ∈ [0, 1). The
employed error channel allows us to study the limit cases for the receivers posterior
belief for p → 0 and p → m

m+1
.

Proposition 5.2. Let π be known to the receiver who observes w ∈ W. Then the
following properties hold.

(i) lim
p→ m

m+1

fπ
w(t) = f0(t).

(ii) Let d∗ := min {d ∈ {0, . . . , n} |µ0({t′ | d(w, π(t′)) = d}) > 0}.

(a) If d∗ < d(w, π(t)) then lim
p→0

fπ
w(t) = 0.

(b) If d∗ = d(w, π(t)) then
lim
p→0

fπ
w(t) = f0(t) · µ0({t′ | d(w, π(t′)) = d(w, π(t))})−1.

(c) If d∗ > d(w, π(t)) the limit of the posterior belief for p → 0 is not defined.

6For binary channels, i.e., m = 1, there is exactly one word with maximal distance n to a
fixed v. The roles of the two letters (bits) simply switch and entropy is symmetric around the
uninformativeness bound p = 1

2 .
7We restrict to the intuitive case p < m

m+1 where errors not abound. However, an analysis for
p → 1 can be deducted with analogous results.
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The first statement simply says that there is a smooth transition of the beliefs
towards the common prior if the error channel gets uninformative. The second
part deals with the behavior of the posteriors if the crossover probability goes to
zero. In the presented continuous case, it is important to keep track of null sets
but can still be intuitively explained. To start with, when receiving w the receiver
determines the closest words to w that are sent the sender with positive probabil-
ity. Let the according distance be d∗ and let receiver contemplate about the state
of the world being t.
If d∗ < d(w, π(t)), the likelihood that the state is t goes to zero if p → 0 since there
are events with positive probability in which words with d(w, v) = d∗ are sent. If
d∗ = d(w, π(t)), then there is no event with positive probability in which words
strictly closer to w are sent than π(t). Taking the limit p → 0, the receiver will
discard states in which words even farther away from w than d∗ are sent. Conse-
quently, the receiver concludes that the true state t′ fulfills d∗ = d(w, π(t′)). The
posterior is consequently given as stated in Proposition 5.2 (ii)(b). Remarkably,
this is true even if w is not expected to be sent with positive probability and the
Bayesian update for p = 0 is undefined.8 Our intuitive interpretation is as follows.
A receiver who hears the word “orunge” concludes that “orange” must have been
the word sent even if they believe the error to be arbitrarily small. However, the
case d∗ > d(w, π(t)) makes it impossible to apply Bayes rule as the receiver neither
expects w to be sent with positive probability, nor do they believe that another
word with distance d(w, π(t)) has been sent.9

5.2 Entropy

Ever since the seminal work of Shannon (1948), the most important measure for
the “amount of information” a communication channel can transport is given by
(Shannon) entropy. In the following we determine the entropy of the q-ary sym-
metric channel of length n and crossover probability p. Intuitively, the more noise
the harder it is for the receiver to confidently decode an observed message. We con-
firm the natural guess that the noise is maximal at the uninformativeness bound
p = m

m+1
and strictly monotonically increasing for both p ↗ m

m+1
and p ↘ m

m+1
.

While there is no noise for p = 0, information cannot become perfect for p = 1
unless for a binary alphabet, i.e., m = 1.

Formally, the entropy of a discrete probability measure P on a finite set X is

8Ortoleva (2012) provide a theoretical model to update given null events.
9If one considers the analogue model with a finite state space and the prior belief has full

support, the case (c) disappears. Especially, the limit for p → 0 is always defined.
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defined as
H(P ) = −

∑
x∈X

P (x) · log(P (x)), (17)

with the convention 0 = P (x) · log(P (x)) if P (x) = 0. The base choice of the
logarithm is a question of normalization and usually chosen to be #X which
is convenient for our setting. The value H(P ) is interpreted as the average of
the information content − log(P (x)) and attributed to describe how surprising
the observation of an element x is given its probability P (x). Some important
properties of the entropy function H include non-negativity, strict concavity in
the probability distribution P with the maximum being attained at the uniform
distribution on X and symmetry in the order of the elements.

Turning to our metric-dependent error channel, ε(. | v) defines a probability
distributions on the set W for any fixed sent word v and any error probability
p ∈ [0, 1] (that is suppressed by the notation). As the choice of v only leads to a
permutation of the probabilities across W and by symmetry of H, H(ε(. | v)) does
not depend on v and Hε(p) = H(ε(. | v)) is well-defined. The following proposition
summarizes characterizing properties of Hε(p).

Proposition 5.3. The entropy of the #A-ary symmetric error channel of length
n with crossover probability p is

Hε(p) = −n · (p log(p) + (1− p) log(1− p)) + n · p log(m). (18)

It is a concave in p ∈ [0, 1] with its unique maximum being attained at p = m
m+1

with value log(#W). Moreover, Hε(0) = 0 and Hε(1) = n log(m).

The proposition gives a quantitative view on the observations made in Remark
5.1. Choosing the base #W for the logarithm, we can interpret Hε(p) as the
percentage of noise of the considered channel. For p = m

m+1
entropy is maximal

and equal to 1, which we interpret as each message being equally likely received.
The error channel thus conveys no information. For p = 0 entropy is zero, showing
that there is no noise. Each piece of information is perfectly transmitted and can
be correctly decoded. If p = 1 entropy is log(m)/ log(m+ 1), telling us how much
information is lost. For m = 1, i.e., a binary alphabet, this expression is again
zero which makes sense since the roles of the letters simply swap, see also footnote
6 on page 13. In contrast, if m > 1, although information can be recovered, there
will be noise left nevertheless. Received words cannot be unambiguously decoded.
In between those extreme cases, due to concavity, we have a monotonic increase
of entropy towards the uninformativeness bound p = m

m+1
from both sides. For

p ↗ communication gets hindered more and more on [0, m
m+1

], while afterwards
communication gets facilitated again.
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Entropy is the quantitative measure for the amount of information that can be
achieved through communication under noise. The following example illustrates
the relation between an increasing noise in terms of entropy and the corresponding
expected loss for a fixed communication device with a non-binary alphabet.

Example 5.4. Let T = [−1
2
, 1
2
] with uniform µ0. Let W = {L,M,R} and consider

π : T → W, π([−1
2
, 0]) = L, π((0, 1

2
]) = R. Figure 3 depicts the best responses of

the receiver, the associated expected loss and the entropy of ε. At the uninfor-
mativeness bound p = 2

3
actions are pooling and expected loss and entropy are

maximal. The receiver can perfectly decode L and R as R and L respectively if
p = 1. However, for p = 1, they now also received the erroneous message M with
positive probability, but cannot perfectly recover the originally sent message in
that case. Consequently, communication under p = 1 is worse than for p = 0. In
numerical terms, we find that L(1)/L(2/3) = 0.625 ≈ 0.63 ≈ Hε(1), thus entropy
roughly captures the expected loss.

α̂(R)

2
3

α̂(L)

α̂(M)

−1
4

0

1
4

1 p

2
3

1
48

1
12

L(π, α̂)

1
p

0

1

Hε(p)

2
3

1 p

Figure 3: Optimal responses, expected loss and entropy for the communication
device in Example 5.4. For three letters the uninformativeness bound is p = 2

3
.

Actions coincide with the pooling action αpool = 0, expected loss and entropy are
maximal. For p = 1, optimal receiver responses to the messages used with positive
probability can be recovered up to re-labeling. Observing L can be perfectly
decoded to have been the original message R. However, M will now be received
with positive probability, leading to a loss in information in comparison to p = 0.

6 The grammar of efficient languages

The most prominent loss function in the study of communication games is the
quadratic loss. It is used as the prime example in the field of cheap talk games ever
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since the seminal of Crawford & Sobel (1982), allowing for analytical tractability.
We analyze the effects of noise on the geometric structure of languages under a
quadratic loss. In the field of linguistics, the set of structural rules of a language
is more prominently known as its grammar. Seeking for efficiency, we replicate
the following grammatical patterns of the agents’ best responses under noise. A
speaker distributes their words in a way that maximizes a certain spread of their
induced interpretations. The range of meanings that a word represents is convex.
Words must not be vague. Noise necessitates to reserve distant words to states
that result in a huge loss if confused. The more noise the clearer the speaker will
stress words that should not be confused, reducing or even forsaking the use of
words that are easily confused.

For now, let ε be an arbitrary noisy channel. Throughout this section we
consider a quadratic loss, i.e, we let ∥.∥ = ∥.∥2 be the Euclidean norm induced by
the scalar product ⟨. , .⟩ and ℓ(x) = x2. Under this assumption, the best response
of the receiver can be written down explicitly.

Lemma 6.1. Having any (posterior) belief µ, with continuous density f > 0, the
receiver’s unique best interpretation is given by

α̂(µ) = Eµ[t]. (19)

Given a communication device π and the induced best responses, the expected loss
is

L(π, α̂) = Eλπ [Eµπ
w
[
∥∥t− Eµπ

w
[t′]

∥∥2

2
]] = Eµ0 [∥t∥

2
2]− Eλπ [∥α̂(w)∥22]. (20)

Furthermore, the receiver on average plays the pooling action

Eλπ [α̂(w)] = αpool. (21)

Lemma 6.1 proves useful for pinning down analytical properties of efficient
languages. As a first application we show that profitable communication is always
possible, as long as the error channel is not uninformative.

Proposition 6.2. If ε is not uninformative there is (π, α) with L(π, α) < Lpool.

In the following subsections, we want to elicit grammatical, i.e., geometric and
structural, properties of efficient communication.

6.1 Convexity of meaning

Employing a quadratic loss provides a new tractable view on what makes up an
efficient language. By expression (20), the expected loss is the difference between a
term that depends only on the state space and its measure and a weighted sum of
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the square norms of the induced interpretations. Minimizing the loss of a language
is thus equivalent to maximizing the spread of induced squared interpretations.
The expected loss is the difference of the pooling loss and the (non-negative)
difference of this spread and the square of the pooling action, precisely

L(π, α̂) = Lpool −
(
Eλπ [∥α̂(w)∥22]− ∥αpool∥22

)
. (22)

Since αpool =
∑

w λπ(w)α̂(w), an efficient language is a decomposition of αpool

that maximizes the weighted sum of induced square norm interpretations among
all communication devices. Summarized as a structural consequence, efficient lan-
guages are as separating as possible.

It is worthwhile to discuss this insight by revisiting Example 3.4 and Example
4.1. Even though the communication device in Example 3.4 results in different
posterior believes, they do not accomplish a spread of induced actions. In contrast,
the best responses in Example 4.1 achieve the maximal spread that the noisy
channel allows. An apparent difference of the two communication devices is that
the cells in the efficient example are convex, while this is not always the case for
the inferior one. Indeed, non-convexity of cells is an indicator that the sender does
not play a best response to the receivers actions under a quadratic loss, as the
next proposition proves.

Proposition 6.3. The set of states for which sending v ∈ W is a (the unique)
best reply given α is a closed (open) convex set.

Proposition 6.3 implies further structural rules on efficient languages. If the
sender plays a best reply to the receiver’s interpretation map α, an induced cell
corresponds to the indicative meaning of the corresponding word. Each cell thus
forms a category in the sense of Lewis (1969). Our result thus generalizes the
linguistic idea that (simple) words have convex categories to communication under
noise, cf. Gärdenfors (2004), Jäger (2007) and Jäger et al. (2011).

Starting at which temperature does on say that it is “hot”? Certainly, most
people agree that 100◦F (38◦C) is hot, but there is hardly a precise threshold
separating “hot” from “not hot” temperatures. Words like “hot”, “tall” or “many”
are vague, they lack a precisely definition, cf. Sorensen (2023) and Lipman (2009).10

Under a quadratic loss and the metric-dependent noise from Section 5, the sender
does not use vague words. If they say “hot” this has a crisp meaning. Formally,
if two words v, v′ are no synonyms, i.e., α(v) ̸= α(v′), sending one of the two
words is almost surely strictly preferred. As a result, the induced cells have sharp
boundaries.

10Vagueness is often associated with the so-called sorites paradox : When makes taking away
grains of sand from a heap stop us referring to the remaining sand as a heap?
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Proposition 6.4. Let ε by the q-ary symmetric channel of length n with crossover
probability p and α an interpretation map of the receiver.
If α(v) ̸= α(v′), the set of states for which the sender is indifferent between sending
v and v′ is a null set for all but at most n values of p ∈ [0, 1].
If in addition p = 0, the sender is almost surely never indifferent, while for the
uninformativeness bound p = m

m+1
they always are.

6.2 The shape of cells and their labeling

In this section, we study an extensive example of a two-dimensional state space
with words of length two. Four classes of noise equilibria are given, each character-
ized by two different properties. Cells shapes can be either quadratic or triangular
and the labeling can respect far away states by using distinct words or not. Our
results suggest that efficient communication under noise needs to be clear in dis-
tinguishing distinct states by words that are not easily confused and use a cell
structure minimizing the length of the boundary between cells.

Let T = [−1
2
, 1
2
]2 be endowed with the uniform distribution µ0 ∼ U(T ), espe-

cially αpool = (0, 0). The sender uses an alphabet with two letters and can send
words of length two W = {A,B}. Communication is frustrated by a binary sym-
metric channel of length two and crossover probability p. Assume p < 1

2
so that

the error function is not uninformative and it is less likely to confound words that
are farther away from one another. Consider the communication devices depicted
in Figure 4 which constitute in fact noise equilibria. A detailed derivation of all
formulae in Table 1 and explanation of the claims is given in appendix Section 9.3.

Languages 1a and 1b employ quadratic tessellations, while 2a and 2b use tri-
angular shaped cells. Note that neighboring cells in 1a and 2a are associated with
words that are close to one another (Hamming distance 1) and words that are less
easily confused are used for cells that are far away from one another. In contrast,
each cell in 1b and 2b has a neighbor the assigned word of which has distance 1
and one with distance 2.

Figure 4 plots the loci of best responses of the receiver are drawn from p = 0
to the uninformativeness bound p = 1

2
. The precise formulae are summarized in

Table 1. As is clear from Proposition 5.2, the receiver’s interpretations start at
the center of each cell and continuously move to the pooling action. Interestingly,
the convergence to the pooling action differs significantly. While the loci in 1a and
2a are straight lines, the ones for 1b and 2b bend towards the cell that uses the
word with distance 1 to the own one. The intuition for this is straightforward:
Look w.l.o.g. at α̂(AA): Within the type-a languages, the cells of AB and BA
absorb the same amount of mistakes from and towards AA, linearly in p. The
word BB does so quadratically but also point-symmetrically w.r.t. the pooling
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1a

AB

AA BA

BB

α(AA)

α(AB)

α(BA)

α(BB)

αpool

1b

AB

AA BB

BA

α(AA)

α(AB) α(BA)

α(BB)

αpool

2a

α(AA)

α(AB) α(BA)

α(BB)

αpool

AA

AB

BB

BA

2b

α(AA)

α(AB)

α(BA)

α(BB)

AA

AB

BA

BB

αpool

Figure 4: Four communication devices on T . The black lines depict the loci of the
receiver’s best responses for p ∈ [0, 1

2
], moving from the center of the resp. cells to

the pooling action. For every p they constitute a noise equilibrium respectively.
While the best responses in 1a and 2a move to αpool in a straight line, they are
pulled closer to the cell of their neighbor with closer words in 1b and 2b.
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Case α(AA) α(AB) L(π, α)

1a
1

4
(−1 + 2p, 1− 2p)

1

4
(−1 + 2p,−1 + 2p)

1

6
− 1

8
(1− 2p)2

1b
1

4
(−1 + 2p, 1− 4p+ 4p2)

1

4
(−1 + 2p,−1 + 4p− 4p2)

1

6
− 1

8
(1− 2p)2(1− 2p+ 2p2)

2a
1

3
(0,−1 + 2p)

1

3
(−1 + 2p, 0)

1

6
− 1

9
(1− 2p)2

2b
1

3
(−p+ 2p2, 1− 3p+ 2p2)

1

3
(−1 + 3p− 2p2, p− 2p2)

1

6
− 1

9
(1− 2p)2(1− 2p+ 2p2)

Table 1: Explicit formulae for the optimal actions and the expected loss of the
languages from Figure 4. The remaining formulae can be found in the appendix
Section 9.3 or by symmetry.

action. Increasing p thus shifts the interpretation on a straight line towards αpool.
In contrast, for the type-b languages, the locus of α̂(AA) is again pulled linearly
by the cells of AB and BA, while quadratically by the one of BB, which is the
weaker force since p < 1

2
< 1. As it is less likely to confuse AA and BB, the border

between their cells is less permeable for mistakes.
Let us take a look at their performance and focus on the nomination of the

cells first. Each type-a language outperforms their type-b ones for each noise level,
see Figure 5. The labeling of the cells thus is an important determinant of the
efficiency of a language. In order to reduce the harm from miscommunication, the
sender should use similar words to describe similar states and use distinct words
to describe states that should not be mistaken.

Turning towards the structure of the cells employed, we find that the quadratic
ones outperform the triangular shaped ones, i.e., type-1 languages have a lower
expected loss than type-2 ones. The squares provide a more compact structure and
have less points near and on the indifference levels than the triangle shapes.11 As a
result the interpretations for type-1 languages stay farther away from the pooling
action than their resp. type-2 peers, leading to a more separable decomposition of
the prior belief.

Interestingly, language 2a results in a lower loss than 1b for a crossover prob-
ability exceeding p = 1

2
−

√
2 ≈ 6%, suggesting that the labeling of the cells can

be more important than the choice of stable cell structures. However, when ana-
lyzing language formation we find both type-1 languages to be stable outcomes of
evolution whereas type-2 languages are unstable, cf. Section 7.

11The total interior border length of type-1 languages is 1 + 1 = 2, while for type-2 languages
this is

√
2 +

√
2 > 2.8.
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0.5

1
24

1
18

1
6

0.06

1a

1b

2a

2b

Figure 5: Expected loss of the four languages from Figure 4 for different crossover
probabilities p. For p = 0 the assignments of words to cells is irrelevant and 1a
and 1b have a lower loss than 2a and 2b. At the uninformativeness bound p = 1

2

the pooling loss realizes for all languages. For all noise levels, 1a (2a) has a lower
loss than 1b (2b). Interestingly, for p > 6% 2a has a lower loss than 1b.

6.3 Efficient languages with four words

Only a few words are really necessary to get the main idea of a sentence. The
remaining words are either decorative, concerned with details or redundant. Em-
phasizing key words becomes more important the more likely communication is
noisy. The following example indicates that the sender has an incentive to stress
the words that describe the states which are farthest away from one another and
would thus lead to a high loss if confused. This property is achieved by enlarging
the cells on the outskirts. As a consequence, the cells close to the pooling action
shrink. In a sense, the sender is willing to give up precision over the whole state
space to ensure that extreme states are not mistaken.

Let T = [−1
2
, 1
2
] be endowed with the uniform distribution. The word space is

given by W = {A,B}2 and the noise is given by a binary symmetric channel of
length two with crossover probability p. For different values of p, we can categorize
efficient languages. Some of them are depicted in Figure 6. Again, note that
extreme states are articulated by sending words that are not easily mistaken.
However, in contrast to the example in Section 6.2, the low dimension of the
current state does not allow to sustain its structure for an increasing noise.

Imagine a speaker describes their friend the height of a person they just have
met. They use words in the scheme “very tiny” (AA), “not too tiny” (AB), “not
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p = 0

0−1
4

1
4

AA AB BA BB

−1
2

1
2

â(AA) â(AB) â(BA) â(BB)

p = 0.1

0 0.13−0.13

AA AB BA BB

−1
2

1
2

â(AA) â(AB)̂a(BA) â(BB)

p = 0.2

0 0.07−0.07

AA AB BA BB

−1
2

1
2

â(AA) â(BB)

Figure 6: Efficient languages in the setting of Section 6.3 for different crossover
probabilities p. Words of maximal distance are used to articulate the boundaries
and their cells enlarge with increasing error.

too tall” (BA) and “very tall” (BB) to set their height in relation to the aver-
age height (indicated by the state 0). Note that we can interpret the letter A
as indicating “tiny” and B as “tall”. If a letter is repeatedly used, its indicative
meaning is stressed, if both are used, its meaning is attenuated by the second
letter.12 Perhaps in contrast to the reader’s intuition, our rational sender does
not like vagueness and thus always has precise definition of the ranges of height
addressed when using a word. If there is no noise, the speaker efficiently com-
municates the height by equally splitting the state space (if heights are equally
distributed). If noise increases, the speaker puts more emphasis describing the
extreme cases than on average sized persons. In the limit, the speaker will not use
words to describe an average person at all and the meaning of the opposite words
AA and BB becomes simply “tiny” and “tall”.

7 Evolution

Natural languages have formed over time by the laws of evolution and are per-
petually changing. The development from indistinct shrieks to elaborate speech
has continuously improved coordination among human beings. Evolutionary game
theory has proved useful in deriving qualitative properties of evolution in biology
by means of simple models, cf. Smith & Price (1973), Hofbauer & Sigmund (1998).
Its main idea is as follows. The population of a species at each point in time is

12Of course, exchanging the words AB and BA in the example does not qualitatively change
the example.
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a distribution over groups of different characteristics. Individuals are randomly
paired and play a game. Their expected excess payoff is proportional to their
fitness. If a group performs better than the average their subsequent share in
the population increases. In the following, we apply evolutionary game theory to
communication under noise. As it turns out, individuals can learn how to use
communication to improve coordination even in the presence of noise.

Formally, we describe an individual by endowing them with both a commu-
nication device π out of the set of all measurable communication devices Σ and
an interpretation map α ∈ T#W for a fixed word space W. The strategy space
Σ× T#W is a complicated space, even more so when considering populations, i.e.,
probability distributions over strategies. The technical foundation has fortunately
been established for certain dynamics and extends to our setting. These include the
replicator, cf. Oechssler & Riedel (2001), Cressman et al. (2006), payoff monotone,
cf. Heifetz et al. (2007), and Brown-von-Neumann-Nash dynamics, cf. Hofbauer
et al. (2009).

We proceed along the lines of Jäger et al. (2011), considering a symmetric
version of the cheap talk game studied so far. When two individuals meet, a fair
coin toss decides about their roles of sender or receiver. An individual using (π, α)
and meeting another one using (π′, α′) amounts to an expected loss of

Λ((π, α), (π′, α′)) =
1

2
L(π, α′) +

1

2
L(π′, α) (23)

for both. Describing a population of individuals by a probability distribution P
on Γ := Σ× T#W the expected loss is generalized to

Λ(P,Q) :=

∫
Γ

∫
Γ

Λ((π, α), (π′, α′))P (dπ, dα)Q(dπ′, dα′). (24)

Individuals are able to learn efficient communication under noise.

Proposition 7.1. The following assertions hold.

(i) The symmetrized loss function is a Lyapunov function for the replicator,
regular and payoff monotone and the Brown-von-Neumann-Nash dynamics.

(ii) Locally optimal languages are Lyapunov stable w.r.t. the replicator, regular
and payoff monotone and Brown-von-Neumann-Nash dynamics.

Figure 7 gives a tractable numerical illustration of evolution by means of the
best reply dynamics in the setting of Section 6.2. In this case, a sender and a
receiver meet every day and play our communication game. In the beginning, both
had a random strategy, but after each encounter they learn the strategy of their
peer and play a best response to that at the next time. As the figure shows, their
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language quickly converges to a noise equilibrium. The depicted equilibrium is a
local optimum that improves upon the pooling loss, but is not efficient, compare
Section 6.2. Indeed, numerical simulations suggest that the languages 1a and 1b
are stable and even attractors of the best reply dynamics, while languages 2a and
2b prove to be unstable.

Figure 7: Numerical simulation of the best reply dynamics in the setting of Section
6.2 (shifted to the unit square). Starting with random interpretations, the agents
take turn in playing a best reply to the previous strategy of their peer. Conver-
gence to equilibrium is measured by the norm distance between two subsequent
interpretation maps. Agents quickly learn one of the noise equilibria 1a or 1b from
Figure 4 which, in contrast to 2a an 2b, appear to be stable and attractors.

8 Conclusion

Within our daily routine, errors in our communication are ubiquitous. Despite
this inhibiting factor, humans have learned to communicate efficiently through
the cause of their existence. This chapter formalizes noisy communication as a
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cheap talk game of common interest and studies its structural properties, i.e.,
the grammar of communication. Efficient languages exist and can be learned by
evolutionary dynamics. The sender optimally induces receiver actions, the spread
of which should be as maximal as possible. As in non-noisy cases, the set of states
which are referred to by a single word is convex and has sharp boundaries to
reduce inefficient vagueness. If noise is present, examples illustrate that the sender
can reduce the expected loss by using distant words to describe distant states.
That way, they minimize the relatively high loss that results from confusing states
that are very distinct. The more noisy communication is, the more important
this becomes. If the dimension of the state space does not allow for errors to
balance out, the communication device in place must adjust for higher errors by
emphasizing extreme states at the cost of describing average states.

9 Appendix

9.1 Finite state space

While assuming a rich state space is compelling if we think of describing, say,
colors, we can also think of scenarios in which states are finite, for instance telling
somebody to go left or right. In fact, one can extend the presented framework by
allowing for point masses of µ0 on the state space. If µ0 only has point masses, we
can thus model a finite state space. In fact, many of the results we have seen carry
over nicely, for instance the uniqueness of sender’s best replies and the existence of
efficient equilibria. The classical framework of Shannon (1948) indeed considered
finite sources which is the natural assumption in information theory where data is
discrete. One of its most important fields for all of our digital data transmission is
coding theory, cf. Roth (2006). A code is a subset C ⊂ {0, 1}n of binary sequences
of a fixed length n. Before the transmission starts, agents declare C and agree
that the sender only sends (code-)words c ∈ C. At first it might seem surprising
that codes typically are a proper subset of all possible words {0, 1}2, but this is
no coincidence. Including redundancy in communication enables the receiver to
detect and probably even correct errors resulting from noise in the transmission
channel. In the following, we illustrate the economic reasoning behind this using
a finite state space with as many words as there are types.

Let T = {−2,−1, 1, 2} be a discrete state space with uniform prior µ0. The
message space is W = {A,B}2. Communication is noisy and the error channel is
given by a binary symmetric channel of length two with crossover probability p.
Let supp(π) = π(T ) be the support of a communication device π. For the sake of
the argument, assume the receiver can still play ‘hedging’ actions, i.e., any point
on the convex hull of T . The expected loss is quadratic. One can argue that,
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up to isometry, there are unique best communication devices for each support of
cardinality 2, 3, 4 if the receiver plays their best response. We depict these in Table
2.

com.dev. π(−2) π(−1) π(1) π(2)

π2 AA AA BB BB
π3 AA AA AB BB
π4 AA AB BA BB

Table 2: The set of communication devices that are optimal given the cardinality
of their support if the receiver plays a best response. Here W = {A,B}2 and
T = { −2,−1, 1, 2}.

A straightforward calculation determines the expected losses given each of the
communication devices from Table 2, see Figure 8 for a plot.

L
Lpool

0
0

1
2

p≈ 5%

π2

π3

π4

Figure 8: Expected loss of the communication devices in Table 2 under the re-
ceiver’s best responses. The communication device using four words is the best
for small values or p, while the one using only two words results in the lowest loss
starting at p ≈ 5%. The agents are never better of using only three words.

The example provides an economic reasoning why codes in information theory
feature redundancy. If there was no noise, the sender can only perfectly reveal the
state to the receiver if they employ as many massages as there are states. However,
if there is noise, all the receiver’s actions get pulled towards the pooling action.
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This effect is more pronounced the more words are used. As a result, there will be
a threshold when using fewer words results in a lower expected loss, see Figure 8,
justifying redundancy of a code.

9.2 Proofs & calculations

Proof of Lemma 3.1. The non-emptiness of the best reply set is given by continuity
of the integrand and compactness of T . We will now prove that the function T →
R, s 7→ Eµ[ℓ(∥t− s∥)] is strictly convex, implying uniqueness of the minimizer. To
this end, assume there are two distinct minimizers s1, s2 and let λ ∈ (0, 1). By the
triangle inequality and convexity of ℓ we have

Eµ[ℓ(∥t− (λs1 + (1− λ)s2)∥)]
≤Eµ[ℓ(λ ∥(t− s1)∥+ (1− λ) ∥t− s2∥)] (25)

<Eµ[λℓ(∥t− s1∥)] + Eµ[(1− λ)ℓ(∥t− s2∥)] (26)

=Eµ[ℓ(∥t− ŝ∥)].

Since the strictness of the inequality in (26) is not too obvious, we give some more
details. By strict convexity of ℓ, we have a strict inequality within the integrand
for all t with ∥t− s1∥ ̸= ∥t− s2∥. Consequently, it suffices to prove that the set
M := {t | ∥t− s1∥ ≠ ∥t− s2∥} has positive µ-mass. By positive definiteness of the
norm we have s1 ∈ M . Since norms are continuous (even Lipschitz), M contains
an open environment (in T) of s1. Since µ is absolutely continuous w.r.t. the
Lebesgue measure we find µ(M) > 0 to conclude the proof.

Proof of Proposition 3.2. We have

L(π, α̂) = Eλπ

[
Eµπ

w
[ℓ(∥t− α̂(w)∥)]

]
(27)

≤ Eλπ

[
Eµπ

w
[ℓ(∥t− αpool∥)]

]
(28)

= Eµ0 [ℓ(∥t− αpool∥)] = Lpool, (29)

using the defining property for the inequality and Bayes-Plausibility to condense
the expectations. The inequality is strict if and only if there is a word w with
λπ(w) > 0 and α̂(w) ̸= αpool as the resp. minimizers are unique.

Proof of Corollary 3.3. If π is constant, say π ≡ v, then ε(w | π(t)) = ε(w | v) is
constant and equal to λπ(w) for any w ∈ W. This implies fπ

w = f0 and µπ
w = µ0.

If v 7→ ε(. | v) is constant, we have Kw := ε(w | π(t)) is independent of t for any
communication device π. Consequently, also λπ(w) = Kw, implying fπ

w(t) = f0(t)
and thus µπ

w = µ0.
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Proof of Theorem 4.2. We follow the proof of Lemma 1 in Jäger et al. (2011) which
can be adjusted to incorporate any noisy channel.

Consider any pure strategy α : W → T of the receiver. Then, a type t-sender
may optimally send any word v out of

argmin
v′∈W

∑
w∈W

ε(w | v′) · ℓ(∥t− α(w)∥). (30)

Note that the set of minimizers is non-empty as W is finite. Now, fix any strict
ordering ≤W on W and define a partition of T by setting

Cα
v :=

{
t | v is smallest w.r.t. ≤W in argmin

v′∈W

∑
w∈W

ε(w | v′) · ℓ(∥t− α(w)∥)

}
(31)

for each v ∈ W. Cα
v is (Lebesgue-)measurable as all involved functions are contin-

uous in t and it is the set difference of a closed set from a finite union of closed sets.
To see this, start by collecting all t for which v is a minimizer, which is a closed
set. Now, for all v′ ≤W v that are also minimizers take away the indifference sets,
which are themselves closed, to obtain Cα

v .

We define a measurable function π : T → W by π(t) = v ⇐⇒ t ∈ Cα
v which

represents one possible best reply of the sender.

Using any such choice we can internalize a sender’s best reply and re-write the
joint loss minimization as a function depending only on α, namely

min
α

∫
T

min
v

{∑
w∈W

ε(w | v) · ℓ(∥t− α(w)∥)

}
µ0(dt). (32)

We identify any strategy α : W → T with a point in TN , N := #W. Thus, by
Lebesgue’s dominant convergence theorem, it suffices to prove continuity of the
integrand in α for any fixed t. But this is obvious as the pointwise minimum of
finitely many continuous functions is again continuous.

Proof of Remark 5.1. The case p = 0 is clear. For 0 < p̃ < 1 we have that

ε(w | v) > ε(w′ | v) ⇐⇒ p̃d(w,v) > p̃d(w
′,v) ⇐⇒ d(w, v) < d(w′, v). (33)

The other cases follow similarly.

Proof of Proposition 5.2. (i) Follows immediately from continuity of the inte-
grand in p̃ and Lebesgue’s theorem.
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(ii) We split the integral in three parts by disassembling the type space T into
the three stets defined by {t′ | d(w, π(t′)) ∼∗ d(w, π(t))} for ∼∗∈ {<,=, >}.

(a) The set {t′ | d(w, π(t′)) < d(w, π(t))} has positive probability and the
negative exponent d(w, π(t′))−d(w, π(t)) will let the integral go to infinity
as p → 0.

(b) The set {t′ | d(w, π(t′)) < d(w, π(t))} has probability zero and can be
neglected. For p → 0, the integral over {t′ | d(w, π(t′)) > d(w, π(t))}
will vanish as the exponent of p̃ is strictly positive. What is left of the
overall integral is

∫
{t′ | d(w,π(t′))=d(w,π(t))} µ0(dt

′) = µ0({t′ | d(w, π(t′)) =

d(w, π(t))}) which is strictly positive by assumption.

(c) Ignoring the integral over null sets, the limit p → 0 makes the integral
go to 0 making the limit meaningless.

Proof of Proposition 5.3. We start by calculating the entropy

H(ε(. | v))

=−
∑
w∈W

ε(w | v) · log (ε(w | v))

=−
∑
w∈W

(1− p)n−d(w,v) ·
( p

m

)d(w,v)

· log
(
(1− p)n−d(w,v) ·

( p

m

)d(w,v)
)

(34)

=−
n∑

d=0

(
n

d

)
·md · (1− p)n−d ·

( p

m

)d

· log
(
(1− p)n−d ·

( p

m

)d
)

(35)

=−
n∑

d=0

(
n

d

)
· (1− p)n−d · pd · log

(
(1− p)n−d · pd

)
(36)

+ log (m) ·
n∑

d=0

(
n

d

)
· d · (1− p)n−d · pd (37)

=−
n∑

d=0

(
n

d

)
· (1− p)n−d · pd · log

(
(1− p)n−d · pd

)
+ np log(m) (38)

=− np · log(p)− n(1− p) · log(1− p) + np log(m) (39)

= n · (H((p, 1− p)) + p log(m)). (40)

During the calculation we used the functional equation of the logarithm and formu-
lae occurring often when dealing with binomial distributions, e.g., its mean. This
function is concave in p since the entropyH((p, 1−p)) = −p log(p)−(1−p) log(1−p)
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over a binary source with probability p is. The maximum is attained for the uni-
form distribution, i.e., if p = m

m+1
by Remark 5.1 and yields H(U(W)) = log(#W).

The other assertions follow readily from the calculated expression.

Formulae for Example 5.4. For p ∈ [0, 1] the optimal response α̂ of the receiver is
given by

α̂(L) =
−2 + 3p

8− 4p
, α̂(M) = 0, α̂(R) = −α̂(L) (41)

and the expected loss given p can be calculated to be

L(π, α̂)(p) =
1

12
− 2−5 · (−2 + 3p)2

2− p
. (42)

Proof of Lemma 6.1. The receiver’s minimization problem reads as

min
α∈T

Eµ[∥t− α∥22] =
∫
T

L∑
k=1

(tk − αk)
2 µ(dt). (43)

Using the Leibniz rule we check the first and second order conditions for each k
and obtain the unique local and global minimum by choosing

α̂k(µ) =

∫
T

tk µ(dt) = Eµ[tk]. (44)

Plugging â(µ) = Eµ[t] back into the expected loss and using the scalar product
⟨. , .⟩ we get

Eµ[∥t− Eµ[t
′]∥22] = Eµ[∥t∥22]− ∥Eµ[t]∥22 , (45)

which is the trace norm of the variance matrix, i.e., the sum of the variances over
each dimension. If a communication device π is given the expected loss is

Eλπ [Eµπ
w
[
∥∥t− Eµπ

w
[t′]

∥∥2

2
]] = Eλπ [Eµπ

w
[∥t∥22]−

∥∥Eµπ
w
[t]
∥∥2

2
] (46)

= Eµ0 [∥t∥
2
2]− Eλπ [

∥∥Eµπ
w
[t]
∥∥2

2
] (47)

where Bayes-Plausibility has been used. Finally, applying Bayes-Plausibility one
more time we observe

Eλπ [α̂(w)] = Eλπ [Eµπ
w
[t]] = Eµ0 [t] = α̂(µ0) = αpool. (48)
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Proof of Proposition 6.2. Without loss of generality, we assume αpool = 0 by trans-
lating the state space and the measure by −αpool. Since ε is not uninformative,
there are two words v, v′ with ε(v | v) ̸= ε(v | v′). Assume that ε(v | v) > 0, apply-
ing similar arguments with swapped roles in the following otherwise.

Note that for any normal vector n⃗ ∈ RL the corresponding L− 1 dimensional
hyperplane H := {t | ⟨n⃗, t⟩ = 0} separated T into two disjoint convex cells Cv :=
T ∩ H+ = {t ∈ T | ⟨n⃗, t⟩ > 0} and Cv′ = T ∩ H− = {t ∈ T | ⟨n⃗, t⟩ ≤ 0}. Since
µ0 is absolutely continuous w.r.t. to the Lebesgue measure, we can choose n⃗ in
a way that both cells have positive µ0-measure and 0 = αpool ∈ Cv′ . Note that
0 ̸= µ0(Cv) ·

∫
Cv

t µ0(dt) = ECv,µ0
[t] ∈ Cv by convexity of Cv and Lemma 6.1 and

thus 0 ̸=
∫
Cv

t µ0(dt).
Now define π(t) = v if t ∈ Cv and π(t) = v′ otherwise. Since we have λπ(v) =

ε(v | v)µ0(Cv) + ε(v | v′)µ0(Cv′) > 0, it is sufficient to show α̂(v) ̸= 0 = αpool to
prove L(π, α̂) > Lpool by Proposition 3.2. We use Lemma 6.1 again and evaluate

0 ̸= α̂(v) · λπ(v) =

∫
T

ε(v | π(t)) · t µ0(dt) (49)

⇐⇒ 0 ̸= ε(v | v)
∫
Cv

t µ0(dt) + ε(v | v′)
∫
Cv′

t µ0(dt). (50)

If ε(v | v′) = 0, we conclude α̂(v) ̸= 0 as ε(v | v) > 0 and
∫
Cv

t µ0(dt) ̸= 0. If
ε(v | v′) > 0 we divide by ε(v | v′) and find

0 = αpool = Eµ0 [t] =

∫
Cv

t µ0(dt) +

∫
Cv′

t µ0(dt), (51)

0 ̸= ε(v | v)
ε(v | v′)

·
∫
Cv

t µ0(dt) +

∫
Cv′

t µ0(dt). (52)

As ε(v | v) ̸= ε(v | v′), we conclude α̂(v) ̸= 0.

Proof of Proposition 6.3. Revisit the argmin-set of sender (11) and recall that
∥x− y∥22 = ∥x∥22 − 2 ⟨x , y⟩+ ∥y∥22. In state t, the sender strictly prefers to send v
instead of v′ if and only if∑

w

ε(w | v) · ∥t− α(w)∥22 <
∑
w

ε(w | v′) · ∥t− α(w)∥22 (53)

⇐⇒
∑
w

(ε(w | v′)− ε(w | v)) ·
(
−2 ⟨t , α(w)⟩+ ∥α(w)∥22

)
> 0 (54)

By linearity of the scalar product, convexity and the topological properties become
clear. For the weak preference substitute the proper inequality accordingly.
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Proof of Proposition 6.4. From (54) the sender is indifferent between sending v
and v′ if the state is t if and only if

0 =
∑
w

(ε(w | v′)− ε(w | v)) ·
(
−2 ⟨t , α(w)⟩+ ∥α(w)∥22

)
(55)

⇐⇒ 0 =− 2 ·

〈
t ,

∑
w

(ε(w | v′)− ε(w | v)) · α(w)

〉
+
∑
w

(ε(w | v′)− ε(w | v)) · ∥α(w)∥22 . (56)

Note that if x⃗ :=
∑

w (ε(w | v′)− ε(w | v)) ·α(w) ̸= 0 the solution set to (56) is the
translation of the L−1 dimensional hyperplane perpendicular to the vector x⃗ by a
particular solution (if it exists, otherwise it is the empty set) and thus a null set in
RL w.r.t. µ0. If x⃗ = 0 we can only have indifference if also

∑
w (ε(w | v′)− ε(w | v))·

∥α(w)∥22 = 0. If this is the case, any t in T (even RL) solves (56). Otherwise, (56)
is equivalent to

0 =
∑
w

(ε(w | v′)− ε(w | v)) · α(w) (57)

⇐⇒ 0 =
∑
w

(
p̃d(w,v′) − p̃d(w,v)

)
· α(w) =: Q(p̃), (58)

where Q is a (vector-valued) polynomial of degree at most n in p̃. Evidently, Q
has a zero in p̃ = 1,i.e., p = m

m+1
, representing the uninformativeness bound. It

does not vanish in p = p̃ = 0 as its constant coefficient is α(v′) − α(v) ̸= 0.
Consequently, Q is not the zero polynomial and has at most n − 1 further zeros
on p ∈ (0, 1] \ { m

m+1
}.

Proof of Proposition 7.1. We adapt the proof of Jäger et al. (2011) to account
for noise. It suffices to show continuity and boundedness of L as this implies
continuity of Λ in the weak topology. The rest of the assertions follow well-known
lines (Heifetz et al. (2007), Hofbauer et al. (2009)) as well as Bhatia & Szegö (2002)
for the last statement.

Let (πk)k be a sequence of communication strategies converging uniformly to
π, i.e., for all ρ′ > 0 there is an M such that for all t ∈ T we simultaneously find
d(πk(t), π(t)) < ρ′ for k > M . As d has only values in {0, . . . , n}, this is equivalent
to πk ≡ π for all k > N0 for some N0. Let ρ > 0 be arbitrary. As T is compact
and |.| as well as ℓ are continuous,there is δ > 0 such that |ℓ(a)− ℓ(b)| < ρ if
∥a− b∥ < δ. Furthermore, let (αk)k be a sequence converging to α uniformly on
T#W ⊊ R#W. Then there is N1 ≥ N0 such that for all t ∈ T and w ∈ W we have
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∥t− αk(w)− (t− α(w))∥ = ∥αk(w)− α(w)∥ < δ for all k > N1. Hence, for all
k > N1 we find

|L(πk, αk)− L(π, α))| (59)

≤
∫
T

∣∣∣∣∣∑
w

ε(w | πk(t))ℓ(∥t− αk(w)∥)−
∑
w

ε(w |π(t))ℓ(∥t− α(w)∥)

∣∣∣∣∣ µ0(dt) (60)

=

∫
T

∣∣∣∣∣∑
w

ε(w | π(t)) (ℓ(∥t− αk(w)∥)− ℓ(∥t− α(w)∥))

∣∣∣∣∣ µ0(dt) (61)

≤
∫
T

∑
w

ε(w | π(t)) |ℓ(∥t− αk(w)∥)− ℓ(∥t− α(w)∥)| µ0(dt) (62)

≤
∫
T

∑
w

ε(w | π(t)) · ρ µ0(dt) = ρ. (63)

Finally, boundedness of L follows from compactness of T and continuity of ℓ, since
ℓ̄ := supt∈T |ℓ(∥t∥)| < ∞. For any π, α

|L(π, α)| ≤
∫
T

∑
w

ε(w | π(t)·) |ℓ(∥t− α(w)∥)| µ0(dt) (64)

≤
∫
T

∑
w

ε(w | π(t)) · ℓ̄ µ0(dt) = ℓ̄ < ∞. (65)

9.3 Calculations of Section 6.2

We prove the assertions and formulae of Section 6.2 by the following lengthy cal-
culations which are structured as follows. We begin by calculating the minimizing
interpretations and the expected loss. Afterwards, fixing any of the calculated
interpretation maps we show that the given tessellation is indeed an optimal one,
even uniquely up to null sets. Denote by EC the expectation operator of the mea-
sure µ0 restricted to the cell C. We begin by noting that for any considered cell
µ0(Cv) =

1
4
and thus for any w

λπ(w) =

∫
T

ε(w |π(t)) dt =
∑
v

ε(w | v) · µ0(Cv) =
1

4
. (66)

(i) Interpretations and expected Loss

Denote by □(AA) and ∆(AA) the resp. square or triangular cell in Figure 4.
The following calculations are down for the resp. languages.
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1 a) We derive the center of gravity of each cell, say the one for AB.

E□(AB)[t] := Eµ0,□(AB)[t] = µ0(□(AB))−1 ·
∫
□(AB)

t dt (67)

= 4 ·
∫ 0

− 1
2

∫ 0

− 1
2

(t1, t2) dt1dt2 =

(
−1

4
,−1

4

)
. (68)

Similarly, or by using symmetry arguments, we obtain the expected values for
AA,BA,BB which are, resp. (−1

4
, 1
4
), (1

4
, 1
4
),(1

4
,−1

4
). Let us now calculate,

e.g., the optimal action α̂(AA).

α̂(AA) = Eµπ
AA

[t] = λπ(AA)−1 ·
∫
T

ε(AA |π(t)) · t µ0(dt) (69)

= 4 ·
∑
w

ε(AA |w) ·
∫
□(w)

t dt (70)

=
∑
w

ε(AA |w) · E□(w) (71)

= (1− p)2 · (−1
4
, 1
4
) + p(1− p) ·

(
(−1

4
,−1

4
) + (1

4
, 1
4
)
)

+ p2 · (1
4
,−1

4
) (72)

=
1

4
· (−1 + 2p, 1− 2p) . (73)

Analogously, by symmetry arguments or using Lemma 6.1 we get α̂(AB) =
1
4
·(−1+2p,−1+2p), α̂(BA) = 1

4
·(1−2p, 1−2p), α̂(BB) = 1

4
·(1−2p,−1+2p).

For each word w we see ∥α(w)− αpool∥2 ↘ 0 for p → 1
2
, where αpool = (0, 0)

is the center of the whole state space.

We are now set to calculate the expected loss and start by observing that
each interpretation has the same norm:

∥α̂(w)∥22 = ·
∥∥∥∥14 · (1− 2p, 1− 2p)

∥∥∥∥2

2

=
1

8
· (1− 2p)2. (74)

Having calculated ET [∥t∥22] =
1
6
, we use (20) to obtain the expected loss

L(π1,a, α̂) =
1

6
−

∑
w

1

4
· 1
8
· (1− 2p)2 =

1

6
− 1

8
· (1− 2p)2. (75)

One clearly sees that the expected loss is monotonically increasing in p ∈ [0, 1
2
]
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b) Using the calculations from (a) we can directly compute the optimal inter-
pretations, only keeping in mind that the centers of gravity are switched for
BA and BB. We obtain α̂(AA) = 1

4
· (−1 + 2p, 1 − 4p + 4p2), α̂(AB) =

1
4
· (−1 + 2p,−1 + 4p− 4p2), α̂(BA) = 1

4
· (1− 2p,−1 + 4p− 4p2), α̂(BB) =

1
4
· (1− 2p, 1− 4p+ 4p2). Thus, for any word w we have

∥α̂(w)∥22 =
1

16
· ((1− 2p)2 + (1− 2p)4), (76)

resulting in an expected loss of

L(π1,b, α̂) =
1

6
− 1

16
·
(
(1− 2p)2 + (1− 2p)4

)
(77)

=
1

6
− 1

8
· (1− 2p)2 · (1− 2p+ 2p2). (78)

We observe for 0 < p < 1
2

L(π1,a, α̂) < L(π1,b, α̂), (79)

thus, the language putting distant words farther away from one another
achieves a lower expected loss.

2 a) The expected values of each colored area can be determined to be E∆(AA)[t] =
(0, 1

3
), E∆(AB)[t] = (−1

3
, 0), E∆(BA)[t] = (1

3
, 0), E∆(BB)[t] = (0,−1

3
).

Optimal actions can be computed to be α̂(AA) = (0,−1
3
+ 2

3
p), α̂(AB) =

(−1
3
+ 2

3
p, 0), α̂(BA) = (1

3
− 2

3
p, 0), α̂(BB) = (0, 1

3
+ 2

3
p).

We thus get

∥α(w)∥22 =
∥∥(0, 1

3
− 2

3
p)
∥∥2

2
=

1

9
· (1− 2p)2. (80)

The resulting expected loss is

L(π2,a, α̂) =
1

6
− 1

9
· (1− 2p)2, (81)

which is strictly higher than L(π1,a, α̂) for any p ∈ [0, 1
2
).

b) Optimal actions can be calculated to be α̂(AA) = 1
3
· (−p + 2p2, 1 − 3p +

2p2), α̂(AB) = 1
3
· (−1 + 3p− 2p2, p− 2p2), α̂(BA) = 1

3
· (p− 2p2,−1 + 3p−

2p2), α̂(BB) = 1
3
· (1− 3p+ 2p2,−p+ 2p2).

We thus get for any word w

∥α̂(w)∥22 =
1

9
(1− 2p)2(1− 2p+ 2p2) (82)

and hence

L(π2,b, α̂) =
1

6
− 1

9
(1− 2p)2(1− 2p+ 2p2), (83)

which is worse than L(π2,a, α̂) for 0 < p < 1
2
.
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(ii) Optimal cell structure

To start with, we simplify the expressions from Proposition 6.3 and Proposition
6.4 for W = {A,B}2. To this end, fix w.l.o.g. the word AA and derive conditions
on a fixed t ∈ T for AA to be the optimal word.

(i) In state t the sender prefers to send AA over BB if and only if∑
w

ε(w | v) ∥t− α(AA)∥22 <
∑
w

ε(w | v) ∥t− α(BB)∥22 (84)

⇐⇒ ∥t− α(AA)∥2 < ∥t− α(BB)∥2 . (85)

(ii) In state t the sender prefers AA over AB (the case BA is analogous) if and
only if ∑

w

ε(w | v) ∥t− α(AA)∥22 <
∑
w

ε(w | v) ∥t− α(AB)∥22 (86)

⇐⇒ ∥t− α(AA)∥22 − ∥t− α(AB)∥22
< p̃

(
∥t− α(BB)∥22 − ∥t− α(BA)∥22

)
(87)

⇐⇒ 2 ⟨t , α(AB)− α(AA) + p̃(α(BB)− α(BA))⟩
+ ∥α(AA)∥22 − ∥α(AB)∥22 + p̃(∥α(BA)∥22 − ∥α(BB)∥22) < 0. (88)

Whereas in (i) we clearly see that the set of states for which the sender is indifferent
between sending AA and BB lie on the perpendicular bisector of α(AA) and
α(BB) if the interpretations do not agree, it is not so obvious in case (ii). What
we can say for sure is, that, as long as α(AB) − α(AA) + p̃(α(BB) − α(BA))
is not the zero vector, the set of indifferent states is again a null set as it is the
intersection of a line and T .

To drop some notation, we just write AA instead of α(AA) from Table 1 when
talking about points in T . Consider the variants (a) and (b) respectively and let
t ∈ □(AA) (resp. t ∈ ∆(AA)) be in the interior.

(a) Observe that

∥t− AA∥2 < ∥t− AB∥2 , ∥t−BA∥2 < ∥t−BB∥2 . (89)

Obviously, sending AA is preferred to BB as ∥t− AA∥2 < ∥t−BB∥2.
Realizing that

∥t− AA∥22 − ∥t− AB∥22 < 0 < p̃ ·
(
∥t−BB∥22 − ∥t−BA∥22

)
, (90)

reveals that sending AA is preferred to AB (and analogously BA). Thus, AA
is the unique best word to be send.
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(b) As before, preferring AA to BB is clear from ∥t− AA∥2 < ∥t−BB∥2. Since

0 ≤ ∥t− AA∥2 < ∥t− AB∥2 , ∥t−BB∥2 < ∥t−BA∥2 , (91)

we find

∥t−BA∥22 − ∥t− AA∥22 >
∣∣∥t− AB∥22 − ∥t−BB∥22

∣∣ (92)

> p̃ ·
∣∣∥t− AB∥22 − ∥t−BB∥22

∣∣ (93)

≥ p̃ ·
(
∥t− AB∥22 − ∥t−BB∥22

)
, (94)

proving that AA is preferred to BA. Eventually, using AA = −BA, AB =
−BB and that ∥α(w)∥ is constant, we find

2 · ⟨t , −AA+ AB + p̃(BB −BA)⟩
+ ∥AA∥22 − ∥AB∥22 + p̃(∥BB∥22 − ∥BA∥22) (95)

= 4 ·

〈
t , AB+BA

2︸ ︷︷ ︸
=:P

〉
. (96)

The expression (96) is smaller than zero in both cases for t ∈ ∆(AA):

1. t1 < 0, t2 > 0 and P1 = 0, P2 < 0.

2. t = (y, z) with z > 0, |y| < z and P = (−x, x), x > 0.

Thus, sending AA is preferred to AB as well.

The calculations above show that the borders of the cells consist precisely of the
points for which the sender is indifferent between sending the resp. messages.
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